It seems safe to assume that technology will continue to bring gains in our energy efficiency. The question is, will it make a difference?
“People tend to consume their efficiency gains,” warns Don Paul, senior advisor on energy and technology to University of Southern California Provost C. L. Max Nikias.
After the technological gains of the late 1970s, energy prices dropped, so consumers bought more powerful cars and moved into bigger houses farther from cities. Per capita energy use stayed more or less the same. Meanwhile, the population grew, and with it, total energy consumption.
One way to spring the efficiency trap would be to put a floor on the price of energy, to prevent backsliding by individuals and businesses. New York Times columnist Thomas Friedman and others have proposed such an approach, which would amount to a tax that would grow if the cost of energy fell.
The more pressing issue is how to lower the cost of energy in the first place. Paul’s expertise – which includes starting Chevron’s energy diversification portfolio – makes him a valuable counselor on the legislative, scientific and policy aspects of the energy problem.
A graduate of the Massachusetts Institute of Technology, where he earned a bachelor’s in mathematics and a doctorate in geophysics, Paul spent his entire career at Chevron. A theoretician with a practical bent, he moved easily between the company’s research complex in La Habra, Calif., and its operations and development effort in the Gulf of Mexico. After holding several management positions, he was appointed president and chief executive officer of Chevron Canada in the mid-1990s, then became Chevron’s first chief technology officer, a position he held for the past 11 years.
After retiring from Chevron earlier this year, Paul renewed his partnership with Nikias as senior advisor on energy and technology. Part of his charge will be to work on expanding research programs through the USC Energy Institute.
His take on conventional and alternative energy research: “Do it all. Do it now. The world is going to need all the energy we can develop.”
“The size of the problem is what most people don’t understand,” he says. “You’re going to need absolutely every molecule. You’re not going to be able to choose.”
The problem with alternative energy is vexingly simple, Paul explains. Renewables like wind and solar pack a lot less energy than oil and gas.
It’s not that alternative energy won’t work. It’s that it takes work. Fossil fuels are easy, and we expect energy to be easy.
Fossil fuel is air conditioning at the touch of a thermostat; alternative energy is passive ventilation, a whole-house fan, heat pump, reflective roof and extra attic insulation, and a house that still is not always quite cool enough.
Fossil fuel is first love; alternative energy is marriage.
We will probably keep flirting with fossil fuels. Like other industry experts, Paul doubts the world can turn away from oil and gas any time soon. After all, fossil energy use is more than 80 percent and very large resources remain – especially for coal.
“And you’d better fix coal while you’re on the way,” he adds.
In a 2007 report to the Secretary of Energy by the National Petroleum Council, Paul (one of its principal authors) identified carbon capture and sequestration as “a critical path” for the United States and China.
But fossil fuels eventually will run out. One could argue that the best stuff, like sweet crude, is already on the way down. Energy companies are grubbing around for dirtier and more carbon-intensive alternatives. Alberta’s tar sands are generating millions of barrels of oil, but also spewing millions of tons of greenhouse gases during the laborious extraction process.
At some point, we enter what Paul calls the “then what?” scenario. If the world cannot continue to increase its energy consumption, as it has done from prehistoric times until now, then what?
“Historically, economic growth has a very high correlation with energy consumption,” he says. The consequences of a world without growth would be at least as severe as those of a world without energy, he notes.
Try to imagine a zero-sum economy where a gain by one person must always come at another’s expense. Now try to imagine a civilization that accepts such a proposition.
People tend to think our appetite for growth was literally fueled by oil, and that before World War II – or at least before the Industrial Revolution – Americans lived in pastoral contentment.
The record shows otherwise, says USC’s Peter Mancall, associate vice provost for research advancement and a historian in USC College, where he studies and teaches early American history.
He cites a 1983 book, "Changes in the Land," in which author William Cronon traced profound changes in colonial New England’s ecosystem back to British ideas about individual property and man’s dominion over nature.
Cronon famously concluded that in the settlers’ haste to exploit the New World’s vast resources, the “people of plenty” were a people of waste.
Although Mancall can point to alternative views in the 19th century, notably articulated in Henry David Thoreau’s “Walden”, he finds that the legal system consistently favored exploitation over conservation.
“The dominant tradition is one of economic development,” he says.
No matter how far back one looks, at least in American history, there is no large-scale model for a sustainable society. In growth speak, “sustainable” is just another word for “limited,” a concept as American as arugula pie.
In 2006, as part of a precursor initiative to the USC Energy Institute, cultural scholar Karen Pinkus received a seed grant to study alternative fuels and the American obsession with cars. Disillusionment set in when she realized our culture of consumption transcends individuals.
In her view, the current focus on individual action – buying hybrid autos, switching to fluorescent bulbs – only diverts attention from the real issues.
She argues that even the most appealing green consumer technologies, such as the famous and now-defunct General Motors EV-1 electric car, “are dangerous in that they distract us from issues such as the emissions generated by industrial production, by constant building of new housing, by the transportation of goods in a global economy, agribusiness and so on.”
Pinkus, a professor of Italian, French and comparative literature in USC College, has no single answer to the climate crisis, except to say that as a first step, we should “undo the certainty of common sense” – the belief that our society, as structured, can reduce greenhouse gas emissions to the necessary degree.
Such logic relies on “the same paradigms that got us into this mess,” she says. In other words, society needs a radically new approach.
Whether the world is up to the challenge is another question. In their 2004 financial guide “The Oil Factor”, noted money managers Donna and Stephen Leeb – whose only agenda presumably is to make good investment calls – advised readers to park some capital in defense stocks in anticipation of the coming “oil wars.”
Then again, maybe we will all learn how to share.
Perhaps the greatest source of comfort is Earth and its capacity to endure. In his presentation at May’s Energy Institute forum, USC College earth scientist Lowell Stott surveyed changes in the planet’s climate over a relatively short time span – a few centuries.
Stott, who served as a reviewer for the Nobel-winning climate change panel, specializes in paleoclimatology, the study of climate change over geological time.
But you don’t have to go back very far to see that Earth’s climate is capable of tolerating far greater change than we have seen to date. Stott presented evidence that the 19th century was far harsher, hotter and drier in California than the past 100 years. In fact, glaciers began receding well before the start of the Industrial Revolution.
“The climate always changes; it always has changed,” he told the audience.
The best we can do, he added, is to understand thoroughly the causes of global climate change, “and by doing so, make better policy choices.”
Good policy. There’s a natural resource that is clean, renewable and no more limited than human ingenuity.
To read or post comments on this article, see the following blogs:
Dvorak Uncensored, http://www.dvorak.org/blog/?p=31977
Eideard, http://eideard.wordpress.com/2008/11/22/watt-now/
NewsTin, h ttp://www.newstin.com/tag/us/89205083